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Magnitude of the prewetting boundary tension near wetting for short-range forces
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We determine in a mean field approximation the spin-% Ising model line tension 7 along the boundary

between surface states at the prewetting transition in the neighborhood of the wetting transition at bulk
phase coexistence. We find very close agreement with the predictions of the interface displacement mod-
el for short-range interactions, i.e., 7 increases (with a square-root dependence on the bulk external field
h) towards a finite limit with diverging slope at wetting. Our findings help both in settling the discussion
on the limiting value of 7 and in understanding the origin of its singular behavior.

PACS number(s): 68.10.—m, 68.45.Gd, 82.65.Dp

Recent studies [1-6] of the contact line where three
coexisting phases meet have revealed interesting singular
behavior for its associated excess free energy, or line ten-
sion 7, when a first-order wetting transition is ap-
proached. Evidence for a sharp increment in the value of
7 in the neighborhood of wetting along both partial wet-
ting [4,5] and prewetting states [4] has already been re-
ported. These results were obtained from studies of mi-
croscopic models in a mean-field approximation. More-
over, a phenomenological interface displacement model
[6] yields analytical predictions that depend crucially on
the range of the molecular interactions: The positive lim-
iting value for 7 is finite only when the decay rate of the
interactions exceeds » ~°. These predictions hint at novel
surface critical phenomena associated with first-order
wetting transitions, the framework of which we sketch
briefly below. This, in turn, points out the relevance of
the contact line in interfacial phenomena, e.g., 7 appears
to play a dominant role in the kinetics of phase change
associated with wetting films [7,8], opening interesting
possibilities for further characterization of the elusive
prewetting transition [9], or, alternatively, for the mea-
surement of 7 itself [7]. Microscopic model studies cap-
able of probing the behavior of 7 have been unable to
come close enough to wetting [4,5], since they encounter
technical difficulties that originate from both the bidirec-
tional nature of the line inhomogeneity and the singular
behavior that takes place there. The purpose of this pa-
per is to help establish the fate of 7 at wetting and to ex-
amine quantitatively, and—if it 1is the case—
substantiate, some of the above-mentioned phenomeno-
logical predictions.

Along prewetting coexistence states, 7 is necessarily
positive, since in this case the line inhomogeneity con-
nects only two surface states that differ in thickness, i.e.,
7 is the tension of an interface between two, two-
dimensional phases. The prewetting transition curve is
bounded by a prewetting critical point, located away
from bulk coexistence, where the two surface states be-
come identical (the analog of bulk criticality where sur-
face tension vanishes), and by the wetting transition at
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bulk coexistence where the two states differ most since
the thickness of one of the interfaces becomes infinite.
Thus, as the wetting transition is approached, it could be
expected that the magnitude of 7 would increase in value,
and possibly diverge. When the wetting transition is ap-
proached along partial-wetting states, the contact angle
between two interfaces tends to zero, and a situation
similar to that obtained from the prewetting side devel-
ops. These two interfaces and the phase they bound turn
out to be, at wetting, a surface state of infinite thickness,
while the remaining interface, which has become parallel
to the other two, is its coexisting surface state.

Now, the surface phase diagram associated with a
first-order wetting transition can be seen to be analogous
to that of a system exhibiting a critical end point. This
can be appreciated when it is considered that the basic
coexisting states are the interfacial states and not the
bulk phases (so that Young’s law, or Antonov’s rule, ap-
pear in place of equality of free energies). Then, partial
wetting would correspond to a line of triple points, com-
plete wetting to a line of ordinary critical points, first-
order wetting to the critical end point, and prewetting
states to a two-phase continuation terminating at another
ordinary critical point. In the context of this analogy the
line tension 7 would exhibit critical behavior singularities
resembling those recently discussed for bulk critical end
points [10]. The interface displacement model [6] pre-
dicts that along prewetting states and for short-ranged
forces (i.e., a decay rate faster than r %), 7 attains its
finite value with a diverging slope that has an inverse
square-root dependence on the (thermodynamic-field) dis-
tance from coexistence. Along partial-wetting states, 7
approaches its finite limit also with divergent slope, a
weak logarithmic divergence in terms of the contact an-
gle. Further, it has also been found that the amplitudes
of these singular terms have universal properties [6]. It is
therefore of interest to compare these predictions with
the outcome of calculations based on microscopic models
in the neighborhood of the wetting transition.

Here we present results obtained from precise numeri-
cal calculations for the mean-field behavior of the line
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tension along prewetting states for the nearest-neighbor
spin-1 Ising model on a cubic lattice. As we shall see,
our results strongly support some of the conclusions ob-
tained from the interface displacement model for short-
ranged forces. We have employed a slab geometry with
two parallel distant surfaces that introduce an asymmetry
via surface fields with opposite signs. As described in
more detail in Ref. 4, this is a convenient geometry to
generate partial-wetting, complete-wetting, and prewet-
ting equilibrium magnetization profiles. In the partial-
wetting regime, the limiting factor in our calculations is
the size of the lattice because this determines the smallest
contact angle attainable. This limitation applies to a
lesser extent to the prewetting states, and in this case it is
possible to perform computations much closer to the wet-
ting transition and therefore open the possibility for more
stringent comparisons.
The Hamiltonian for the model is (with spins S; ==1)

H{S}H)=—J 3

(i,jY€T,,T,
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where J is the bulk (or interior) coupling; J; and J, the
J

2 i=0j=0
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surface couplings on the two parallel planar surfaces I';
and T',, respectively; 4 is the bulk (or interior) magnetic
field; and #; and A, are the surface magnetic fields on I';
and I',, respectively. The surface couplings are taken to
be equal, J,=J, >0, and the surface fields of the same
magnitude but opposite signs, #;=—h, <0. We denote
by (—) and (+) the two phases that coexist with interfa-
cial tension oy when the temperature T is below the criti-
cal temperature T, and # =0. The (—) phase is favored
by I'; with surface free energy o;_ and the (+) phase is
favored by I', with surface free energy 0, =0 ;_. When
the (+) phase develops close to I';, or the (—) phase de-
velops close to I',, a larger surface free energy o, =o0,_
is obtained. We choose the surfaces J; and J, to be
oriented along the (100) lattice plane directions and to be
rectangles of N XM lattice sites separated by L lattice
sites. The model is translationally invariant with respect
to the (001) plane direction where the lattice has a width
of N sites. The magnetization is always uniform along
this direction. At equilibrium, when A >0 and T and A,
are chosen to position the system at a prewetting transi-
tion, both (+4) and (—) phases can come close to the I';
surface and two different surface states can coexist there,
while only the (+) phase can come close to the I', sur-
face. In this case there is one contact line of length N on
I, with tension 7 [4].

The model mean-field free-energy functional F[{m, ;}]
is written as

L M L M
2 2 [(1+m,’1)1n(1+m,’1)+(l_ml’])ln(l_ml,])]_-, 2 2 m,-,j(m,-’j+1+mi+1,j+mi,j)

i=0j=0
L M—1

M M
_(JI_J) E [m(),j(mo’j+1+m0’j)+mL,j(mL’j+1+mL’j)]_h 2 2 m,-’j—(hl—h) z(mo’j'—mL’j) ’ (2)
j=0 j=0

where i and j are the column and row indexes, respective-
ly, for a site in the lattice plane perpendicular to the pla-
nar surfaces; i =0 and i =L define I'; and T',, respective-
ly. The magnetization profiles m, ; are obtained as solu-
tions of the Euler-Lagrange equations associated with the
above equation with the additional boundary conditions
m; ;.1=m, ; at the free edges of the lattice. These equa-
tions are solved numerically by simple iteration methods
and the equilibrium solutions are those which minimize
F.

The locus of prewetting transitions that we determined
for our study of the line tension is shown in Fig. 1. We
chose J;=1.5J and a fixed working temperature
kT /J=5.46, given that the critical temperature is
kT,/J=6; therefore, this locus lies on the (h /J,h;/J)
plane. In the scale of the Figure, the prewetting line does
not show [11] the tangential (and logarithmic) approach
to bulk coexistence characteristic of short-range forces;
the wetting transition has a surface field value of

{=—0.1256. Then we determined the magnetization
profiles for the surface states along this coexistence curve,
first, as single surface phases occupying the whole of the
lattice, and, secondly, in actual coexistence with each

i=0 j=0

[

other via the line inhomogeneity. In all cases the global
error at iteration n, measured as

> fabs[m,; ;(n)—m, ;(n—1)]} ,
iJj
was less than 10~ 8 (like that for k, /J for the prewetting
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FIG. 1. Isothermal locus (kT /J =5.46) of prewetting transi-
tions employed in the study of the boundary tension; the wetting
transition has a surface field value of A’ = —0.1256.
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transition locus in Fig. 1) for all lattices up to the max-
imum size considered (L =50 and M =400). The number
of iterations necessary to reach convergence increased as
the wetting transition was approached in a manner rem-
iniscent of critical slowing down near critical states. (The
smallest value for the bulk field considered was
h /J=2.75X107° when it was necessary to perform over
5% 10° iterations.)

The proximity to the wetting transition was monitored
via the width W of the thick surface state at prewetting.
This width is shown in Fig. 2(a) as a function of In(4 /J),
where the linear behavior is indicative of that corre-
sponding to short-range potentials in the neighborhood of
the wetting transition. The stepwise behavior of W in
this figure is due to our definition of this quantity as the
number of lattice sites from the surface I'; at which the
absolute value of the magnetization is a minimum. We
also found that as 4 is made to vanish, the line inhomo-
geneity extends faster along the direction parallel to the
surfaces than in the direction normal to them. Therefore,
it was necessary to consider lattices with large surface
sizes (with M up to 400) for the profiles to become uni-
form along the direction parallel to the surfaces away
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FIG. 2. (a) Width W of the thick film at prewetting vs loga-
rithm of the bulk field . Linear behavior is predicted near wet-
ting. The stepwise behavior is due to the lattice and its
definition (see text), while the straight lines are guides to the
eye. (b) Displacement profile /(i) of Eq. (3) vs logarithm of the
wall coordinate i for A /J=2.75X1075. Linear behavior is pre-
dicted at wetting. The inset shows the same profile as a function
of i. The stepwise nature of /(i) is introduced by the lattice.
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from the central region of the lattice. The absence of
finite-size effects was confirmed by reproduction of the
profiles when only one surface phase is present by the
wings m; o and m; ,, of the profiles with the contact line.
In Fig. 2(b) we show a plot of the function

[(i)=min;[abs(m, ;)] , (3)

versus In(i) for the interval 110 <i <207 for the smallest
bulk field 4 /J =2.75X 107 (the line inhomogeneity ap-
pears centered at =207 and terminates roughly at
i=110). The function /(i) is analogous to the displace-
ment profile /(x) in the phenomenological theory of Ref.
[6], which at wetting becomes proportional to Inx for
short-ranged forces. Besides the stepwise nature of (i),
introduced by the lattice, we observe from Fig. 2(b) that
we obtain a close approximation to this logarithmic form
close to wetting, and in support of the theoretical predic-
tions mentioned.

We refer now to the results for the boundary tension it-
self. The bulk free energy was determined by solving the
Euler-Lagrange equations for the uniform magnetization
m; ;=m and substituting in the free-energy expression in
Eq. (2). The surface free energies o, _(T,h,h|)=0,
and 0, =0,_ were obtained by subtraction of the bulk
free energy from the total free energy calculated from the
generated single-phase profiles. Finally, the line tension
was determined by subtraction of bulk and surface terms
from the free energy calculated from the generated
double-phase profiles. Our results for the boundary ten-
sion are shown in Fig. 3 together with those from a
minimum square fit of the formula

t/J=1y/J— A(h/J)¢ for h—0, 4)

with ¢=1 (as indicated by the asymptotic form obtained
from the phenomenological theory). For ¢=1, we ob-
tained 73/J=0.8180 and A4 =2.4878, whereas if 7,/J is
given the value 0.8180, one obtains ¢=0.5222 and
A =2.9639. Thus, from these data we are inclined to con-
clude that the predictions drawn in Ref. [6] from the in-
terface displacement model appear to be confirmed for
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FIG. 3. The boundary tension 7 as a function of the bulk
external field (crosses), together with those from a minimum-
square fit (circles) of the asymptotic form in Eq. (4) predicted by
the phenomenological theory for the case of short-range forces.
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short-ranged forces along prewetting states, leading to a
finite line tension at the wetting transion. We note that
in the global surface phase diagram [12], the extraordi-
nary transition (occurring at # =0 and positive surface
enhancement factor [12]) is a point on the first-order wet-
ting transition locus and previous [3] results show a finite
value of 7 at this point.

Short-range forces seem therefore to provide an in-
teresting limiting case in which, even though the thick-
ness of one of the coexisting surface states becomes
infinite at the wetting transition, the extent of the line in-
homogeneity does not acquire the quality of area. The
finiteness of 7 results from the development of an inho-
mogeneous region that becomes much wider along the
two coexisting interfaces (along the surface I';) than in
the direction normal to them, and leads to the specific
logarithmic form of /(i). This form for /(i) is reminiscent
of that for the order-parameter profiles at a critical end
point for which is found a slow approach to its limiting
value at the critical phase [13], in support of the analogy
between these two problems mentioned above. Our
confirmation of the inverse square-root divergent slope of
7 strengthens the view that this quantity displays singular
critical behavior at wetting. A similar situation takes
place for long-range forces (with a decay rate not greater
than r ~%) except that in this case the displacement profile
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I (x) exhibits a faster growth, with x suggesting the diver-
gence of 7 itself at wetting [6]. The equilibrium fluctua-
tions of this line are necessarily accompanied by bulk and
surface fluctuations, and these are likely to determine the
overall behavior. Thus, our mean-field analysis may not
suffer radical modifications. The application of more
powerful techniques to the analysis of the line inhomo-
geneity, like the Monte Carlo simulations already used to
study the related surface states [14], will help in assessing
the general validity of the results presented here.

Note added in proof. The prewetting boundary tension
has been determined recently for a mean-field density
functional [15]. This work reports a growth of 7 compa-
tible with a vanishing exponent as the distance to the
wetting transition goes to zero. Their results are general-
ly consistent with those reported here and in Ref. [4].
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